
ECE 174 – Lecture Supplement – SPRING 2009

Introduction to Nonlinear Least-Squares

Kenneth Kreutz-Delgado
Electrical and Computer Engineering

Jacobs School of Engineering
University of California, San Diego

VERSION ECE174NLS-S2009v1.0

Copyright c© 2003-2009, All Rights Reserved

May 20, 2009

Nonlinear Mappings and Vector Derivatives. Let the function

h(·) : X = Rn → Y = Rm

be a nonlinear mapping between two finite-dimensional real vector inner-product (vector)
spaces.1 We assume that the space X has the standard (Cartesian) inner product weighting
matrix Ω = I while the space Y has a general inner product weighting matrix W .

The image of h(·) is defined to be the image of the domain X under the action of the
mapping,2

Im(h) = h(X ) = {y | y = h(x), x ∈ X } ⊂ Y .

If h(·) happens to be linear, then the image of h is also called the range of h.

Let x = (x1 · · ·xn)T ∈ X = Rn. We denote the 1× n vector derivative operator3 by

∂

∂x
=

(
∂

∂x1

· · · ∂

∂xn

)
.

1Henceforth all vector spaces are assumed to be real.
2When h(·) is linear, the image is equal to the range of h.
3Also know as the row gradient or covariant gradient.

1



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.02

If f(x) is a scalar–valued function we define ∂
∂x
f(x) to be equal to

∂

∂x
f(x) ,

(
∂

∂x1

f(x) · · · ∂

∂xn

f(x)

)
.

For a general m–dimensional nonlinear function h(x) we define

∂

∂x
h(x) ,


∂
∂x
h1(x)
...

∂
∂x
hm(x)

 =


∂

∂x1
h1(x) · · · ∂

∂xn
h1(x)

...
. . .

...
∂

∂x1
hn(x) · · · ∂

∂xn
hn(x)

 .

This is also known as the Jacobian matrix 4 and if m = n the Jacobian of the transformation5

y = h(x) is given by the scalar–valued function
∣∣det ∂

∂x
h(x)

∣∣.
By component–level considerations, the following useful identities can be readily shown

to be true:

∂

∂x
cTx = cT for an arbitrary vector c (1)

∂

∂x
Ax = A for an arbitrary matrix A (2)

∂

∂x
xT Ωx = 2xT Ω when Ω = ΩT (3)

∂

∂x
h(g(x)) =

∂h

∂g

∂g

∂x
(Chain Rule) . (4)

Various “product rule” identities can also be proved, but they will not be needed here.

As an important example of the usefulness of these identities, consider the derivation of
the vector derivative of the nonlinear weighted least-squares loss function6

`(x) =
1

2
‖e(x)‖2

W , e = y − h(x) . (5)

We have,

∂

∂x
`(x) =

∂`

∂e

∂e

∂x
= eTW

∂e

∂x
= −eTW

∂

∂x
h(x) = − (y − h(x))T W

∂

∂x
h(x) . (6)

The gradient7 of a scalar–valued function f(x) is defined by8

∇xf(x) ,

(
∂

∂x
f(x)

)T

. (7)

4Discussed at great length in robotics textbooks.
5Used to obtain the probability density function of transformed random variables as discussed in courses

on probability theory.
6The factor 1

2 is added merely for convenience. Recall that W must be symmetric, positive–definite and
corresponds to the use of a weighted inner–product on Y = Rm.

7Also known as the contravariant derivative, contravariant gradient, or column derivative.
8For a general X -space metric weighting matrix Ω the gradient is more generally given by ∇xf(x) =

Ω−1
(

∂
∂xf(x)

)T
.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.03

The gradient gives the local direction of steepest ascent (increase in value) in the space X of
the scalar function f(x).

Note, in particular, that the gradient of the weighted least-squares loss function is given
by

∇x`(x) = −
(
∂h(x)

∂x

)T

W (y − h(x)) = −
(
∂h(x)

∂x

)∗
(y − h(x)) , (8)

where (
∂h(x)

∂x

)∗
=

(
∂h(x)

∂x

)T

W

is the adjoint operator of the Jacobian matrix ∂h(x)
∂x

with respect to the weighted inner
product on Y = Rm.

Multivariate Taylor Series Expansion. Using the vector derivative notation developed
above, we can denote the Taylor series expansion of a vector–valued function h(x) about a
point x0 as

h(x) = h(x0 + ∆x) = h(x0) +
∂h(x0)

∂x
∆x+ higher order terms , (9)

where ∆x , x− x0. Note in particular that if we set

∆y , h(x)− h(x0) = h(x0 + ∆x)− h(x0)

we have

∆y =
∂h(x0)

∂x
∆x+ higher order terms ,

showing that the Jacobian matrix,

H(x) ,
∂h(x)

∂x
, (10)

provides the linearization of h(x),

∆y ≈ H(x0)∆x .

The differential statement is, of course, exact

dy =
∂h(x0)

∂x
dx = H(x0) dx .

The Taylor series expansion of a scalar–valued function f(x) can be written as

f(x0 + ∆x) = f(x0) +
∂f(x0)

∂x
∆x+

1

2
∆xTH(x0)∆x+ h.o.t. , (11)



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.04

where H(x) denotes the hessian matrix of second–order partial derivatives,

H(x) ,
∂2f(x)

∂x2
,

∂

∂x
∇xf(x) =

(
∂2f(x)
∂xixj

)
.

Note that we can approximate the scalar–function f(x) to quadratic order about a point x0

as

f(x) ≈ f(x0) +
∂f(x0)

∂x
∆x+

1

2
∆xTH(x0)∆x (12)

= f(x0) + (∇xf(x0))T ∆x+
1

2
∆xTH(x0)∆x , (13)

where the last step follows from the gradient definition given in Equation (7).

The Nonlinear Least–Squares Problem. Suppose we want to solve the nonlinear in-
verse problem

y ≈ h(x)

for a given nonlinear function h(·) : X → Y . We assume that h(·) is (locally) one–to–one9

but generally not onto, Im(h) = h(X ) 6= Y .10 The inner–product weighting matrix on the
domain X is taken to be Ω = I. On the codomain Y the inner–product weighting matrix
is taken to be an arbitrary symmetric positive–definite m × m matrix W . Defining the
discrepancy between y and h(x) by the error e(x) = y − h(x), a rational way to proceed is
to find a value for x which minimizes the nonlinear least–squares loss function defined above
in Equation (5).

It is well-known that a necessary condition for x0 to be a local minimum point (or a
local maximum point, or an inflection point) for a differentiable loss function `(x) is that
the gradient of the loss function evaluated at x0 vanish

∇x`(x0) = 0 .

From Equation (8) above, this condition is equivalent to the nonlinear normal equations

H∗(x0) (y − h(x0)) = 0 (14)

where H(x) = ∂h(x)
∂x

is the Jacobian matrix of h(x) and H∗(x) = HT (x)W is the adjoint
operator to the matrix H(x) assuming the inner–product weighting matrices Ω = I and W
on the domain and codomain respectively.

The condition (14) is interpeted geometrically as indicating that the error e(x) = y−h(x)
must be orthogonal to the tangent hyperplane spanned by the columns of H(x) at an optimal

9That is, h(x) is one–to–one in a neighborhood of the point x.
10Note that “generally not onto” means that we might have h(·) onto. We want to have a generally enough

development that we can handle both the case where h(·) is onto as well as the case where it is not onto.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.05

point x0. Under the assumed condition that h(x) is locally one-to-one at the point x it must
be the case that the jacobian matrix H(x) is one-to-one (has full column rank)11 and therefore
the n× n matrices H(x)TH(x) and H∗(x)H(x) = HT (x)WH(x) are invertible.

Note that if h(x) happens to be linear, h(x) = Ax, then H(x) = A, H∗(x) = ATW and
the condition (14) becomes the standard linear least–squares normal equations,

ATWAx0 = ATWy .

It is well-known that a sufficient condition for x0 to be a local minimum for the loss
function `(x) is that the condition (14) holds at x0 and the hessian matrix of `(x) be positive
definite at x0

H(x0) =
∂

∂x
∇x`(x0) =

(
∂2`(x0)
∂xi∂xj

)
> 0 . (15)

It can be shown that the hessian matrix of `(x) is given by

H(x) = HT (x)WH(x) +

(h(x)− y)T W ∂H1(x)
∂x

...

(h(x)− y)T W ∂Hn(x)
∂x

 , (16)

where Hi(x) denotes the i–th column of the Jacobian matrix H(x). In the special case when

h(x) is linear, h(x) = Ax, we have that H(x) = A and ∂Hi(x)
∂x

= 0, i = 1, · · ·n, yielding,

H(x) = HT (x)WH(x) = ATWA .

The conditions (14) and (15) tell us when we have found a locally optimal (i.e., minimiz-
ing) solution. The question still remains as to how we actually find one. Below we discuss
iterative techniques for finding an optimum. In particular we present the Newton Method
and the Gauss–Newton Method and discuss how they can be interpreted as special cases of
Generalized Gradient Descent, where the Generalized Gradient Descent methods are a gen-
eral family of methods which generalize the standard gradient descent method of nonlinear
optimization.

The Newton Method. The Newton method is based on reiteratively minimizing the
quadratic approximation (13) of the loss function `(x) evaluated at a current estimate, x̂k of
the unknown optimal solution x0,

`(x) = `(x̂k + ∆xk) ≈ ˆ̀Newton(∆xk) , `(x̂k) + (∇x`(x̂k))T ∆xk +
1

2
∆xT

kH(x̂k)∆xk , (17)

11In fact, the linearization H(x) being one-to-one at the point x is a necessary and sufficient condition for
the nonlinear function h(x) to be locally one-to-one at the point x.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.06

where ∆xk = x − x̂k.12 To minimize the approximation (17) with respect to ∆xk, we solve
the necessary condition

∂

∂∆xk

ˆ̀Newton(∆xk) = 0 , (18)

for an optimum “update” ∆xk. Using the vector derivative identities given above and as-
suming the invertibility of the matrix H(x̂k), the necessary condition (18) yields,

∆xk = − (H(x̂k))−1∇x`(x̂k) = (H(x̂k))−1HT (x̂k)W (y − h(x̂k)) , (19)

where the last step follows from Equations (8) and (10). Note that the hessian matrix
∂2

∂(∆xk)2
ˆ̀Newton(∆xk) of the approximation (17) is equal to H(x̂k).

Once we have determined the correction, we can obtain an improved estimate of the
optimal solution as

x̂k+1 = x̂k + ∆xk = x̂k + (H(x̂k))−1HT (x̂k)W (y − h(x̂k)) . (20)

Note that if x̂k is already an optimum solution, then ∇x`(x̂k) = 0 yielding ∆xk = 0.13

Equation (20) provides an iterative method for generating estimates of an unknown
optimum solution x0. As discussed below, the iterative algorithm (20) is usually slightly
generalized by adding a positive, real–valued step–size parameter αk to the correction term,

∆xk = −αk (H(x̂k))−1∇x`(x̂k) = −αk (H(x̂k))−1HT (x̂k)W (y − h(x̂k)) , (21)

yielding the Newton Algorithm:

x̂k+1 = x̂k + ∆xk = x̂k + αk (H(x̂k))−1HT (x̂k)W (y − h(x̂k)) . (22)

Often the step size is taken to be constant, αk = α ≤ 1. The simple choice α = 1 is called
the Newton step.

With a appropriate choice of step–sizes αk,14 the algorithm (22) can usually be stabilized
so that the iterative estimates converge to a locally optimal solution x0,

x̂∞ , lim
k→∞

x̂k = x0 .

However, the initial condition x̂0 used in (22) often results in different locally optimal so-
lutions, so that a variety of initializations are usually tried. The resulting locally optimal
solutions are then compared and the most optimal of them is kept as the final solution.15

As discussed in textbooks on optimization theory, the Newton method usually has robust
and fast convergence properties. Unfortunately, the method is also usually difficult to im-
plement as the construction of the Hessian via equation (16) and its subsequent inversion at
each iteration–step is usually difficult and time consuming. For these reasons other methods,
such as the Gauss–Newton method discussed next, are more often used.

12Which is equivalent to x = x̂k + ∆xk.
13Thus, if x̂k is an optimum solution, there is no need to correct it.
14Quite often the Newton step α = 1 will suffice.
15The question of if and when the true globally optimal solution has been found is generally a difficult one

to answer.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.07

The Gauss–Newton Method. Whereas the Newton method is based on reiteratively
approximating the loss function about a current estimate x̂k to quadratic order, the Gauss–
Newton method is based on reiteratively linearizing the inverse problem about the current
estimate. Note from equation (9) that an expansion of h(x) about a current estimate x̂k

yields
e(x) = y − h(x) ≈ y − h(x̂k)−H(x̂k)∆xk = ∆yk −H(x̂k)∆xk ,

and therefore

`(x) = `(x̂k + ∆xk) =
1

2
‖e(x)‖2

W ≈ ˆ̀Gauss(∆xk) ,
1

2
‖∆yk −H(x̂k)∆xk‖2

W . (23)

Note that this loss function provides a weighted least–squares solution to the lineararized
inverse problem

∆yk ≈ H(x̂k)∆xk . (24)

Recalling that h(x) is locally one–to–one if and only H(x) is one–to–one, the loss–function
approximation (23) can be minimized with respect to ∆xk yielding the unique correction

∆xk =
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W∆yk

=
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W (y − h(x̂k)) (25)

= −
(
HT (x̂k)WH(x̂k)

)−1∇x`(x̂k) ,

where the last step follows from Equations (8) and (10). The hessian matrix ∂2

∂(∆xk)2
ˆ̀Gauss(∆xk)

of the loss–function approximation (23) is equal to HT (x̂k)WH(x̂k).

As expected the correction (25) is equivalent to

∆xk = H+(x̂k) ∆yk (26)

and provides the solution to the linearized inverse problem (24), where

H+(x̂k) = (H∗(x̂k)H(x̂k))−1H∗(x̂k) =
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W

is the pseudoinverse of H(x̂k) with respect to the W–weighted inner–product on Y = Rm.

Once we have determined the correction (25)–(26), we can obtain an improved estimate
of the optimal solution as

x̂k+1 = x̂k + ∆xk = x̂k +H(x̂k)+∆yk (27)

= x̂k +
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W (y − h(x̂k)) . (28)

Note that if x̂k is already an optimum solution, then ∇x`(x̂k) = 0 yielding ∆xk = 0 as
a consequence of Equations (8) and (10). Equation (28) provides an iterative method for
generating estimates of an unknown optimum solution x0.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.08

As justified below, the iterative algorithm (28) is usually slightly generalized by adding
a positive, real–valued step–size parameter αk,

∆xk = αk H
+(x̂k)∆yk = αk

(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W∆yk , (29)

yielding the Gauss–Newton Algorithm:

x̂k+1 = x̂k + ∆xk = x̂k + αk H(x̂k)+∆yk (30)

= x̂k + αk

(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W (y − h(x̂k)) . (31)

Often the step size is taken to be constant, αk = α ≤ 1 with the value α = 1 called the
Gauss–Newton step.

With a appropriate choice of step–sizes αk, the algorithm (31) can usually be stabilized16

so that the iterative estimates converge to a locally optimal solution x0,

x̂∞ , lim
k→∞

x̂k = x0 .

However, the initial condition x̂0 used in (31) often results in different locally optimal so-
lutions, so that a variety of initializations are usually tried. The resulting locally optimal
solutions are then compared and the most optimal of them is kept as the final solution.17

A comparison of Equations (16), (19) and (25) indicates that the Gauss–Newton method
can be viewed as an approximation to the Newton method corresponding to the assumption
that the second term on the right–hand–side of (16) evaluated at x̂k is negligible,(h(x̂k)− y)T W ∂H1(x̂k)

∂x
...

(h(x̂k)− y)T W ∂Hn(x̂k)
∂x

 ≈ 0 (32)

so that
H(x̂k) ≈ HT (x̂k)WH(x̂k) = H∗(x̂k)H(x̂k) . (33)

Another way to see this is to expand the definition of ˆ̀Gauss(∆xk) given on the right–hand–
side of (23) and then compare the result to the definition of ˆ̀Newton(∆xk) given in (17).

Consideration of the condition (32) allows us to conclude that if h(·) is onto, or if we have
other reasons to believe that the approximation error e(x̂k) = y − h(x̂k) can be made small,
then the difference between the Newton and Gauss–Newton algorithms will become negligible
as e(x̂k) → 0. Not surprisingly then, the simpler Gauss–Newton method is more often
implemented than the Newton method. However the Gauss–Newton method still requires a
matrix inverse at each iteration step, which can be computationally prohibitive. As discussed
below, an even simpler algorithm is provided by the gradient descent algorithm.18

16Quite often the Gauss–Newton step α = 1 will suffice.
17As with the Newton method, the question of if and when the true globally optimal solution has been

found is generally a difficult one to answer.
18However the increase in simplicity usually comes at the price of a significant degradation in the rate of

convergence.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.09

Generalized Gradient Descent. Consider the nonlinear least–squares loss function (5).
We have that

d` =
∂`(x)

∂x
dx ,

so that if we linearize about a current estimate x̂k we can claim that

∆`(∆xk) , `(x)− `(x̂k) = `(x̂k + ∆xk)− `(x̂k) ≈ ∂`(x̂k)

∂x
∆xk = (∇x`(x̂k))T ∆xk (34)

to a high degree of accuracy provided that ∆xk = x − x̂k is “small enough.” It is the
requirement that this approximation be valid which leads us to introduce the step–size
parameter αk. As we show below, the step–size αk is chosen to have a small value precisely
in order to keep the correction ∆xk “small enough” to preserve the validity of Equation (34)
and this is done in order to guarantee stability and convergence of the resulting algorithm.

Assuming the validity of Equation (34), let the correction be given by

∆xk = −αk Q(x̂k)∇x`(x̂k) = αk Q(x̂k)HT (x̂k)W (y − h(x̂k)) , (35)

where αk > 0 and Q(x) = QT (x) > 0 is an arbitrary positive–definite, symmetric matrix–
valued function of x.19 We call the term Q(x̂k)∇x`(x̂k) a generalized gradient and the
resulting correction (35) a generalized gradient–descent correction.

Recalling that the gradient ∇x`(x̂k) defines the direction of steepest ascent of the function
`(x) at the point x = x̂k, it is evident that the negative gradient, −∇x`(x̂k), gives the
direction of steepest descent at the point x̂k. For the case Q(x) = I, the correction is
directly along the direction of steepest descent and the resulting algorithm is known as a
gradient descent algorithm. For the case of a general positive–definite matrix–valued function
Q(x) 6= I, we can potentially improve the descent direction by using the negative of the
generalized gradient as a descent direction, and the resulting algorithm for an arbitrary
Q(x) is called a generalized gradient descent algorithm. Thus the generalized gradient descent
algorithms include the standard gradient descent algorithm as a special case.

With the correction (35) we obtain the Generalized Gradient Descent Algorithm:

x̂k+1 = x̂k + ∆xk = x̂k + αk Q(x̂k)HT (x̂k)W (y − h(x̂k)) . (36)

Note the following important special cases:

Q(x) = I Gradient Descent Method (37)

Q(x) =
(
H(x)TWH(x)

)−1
Gauss–Newton Method (38)

Q(x) = (H(x))−1 Newton Method (39)

19Note that if the approximation (34) is not valid for this particular choice of ∆xk, we can reduce the size
of αk until it is.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.010

In particular, note that

x̂k+1 = x̂k + ∆xk = x̂k + αk H
∗(x̂k) (y − h(x̂k)) Gradient Descent Method (40)

x̂k+1 = x̂k + ∆xk = x̂k + αk H
+(x̂k) (y − h(x̂k)) Gauss–Newton Method (41)

The increase in complexity involved in moving from a gradient descent algorithm to a
Gauss–Newton algorithm (or a Newton algorithm) is quite significant, however this move
also generally results in a significant improvement in performance. Although the classical
Gradient Descent method is the easiest of the methods to implement, it tends to have very
slow convergence compared to the Gauss–Newton and Newton methods.

What is the importance of the step–size parameter αk? From Equations (35) and (36),
and assuming the validity of (34), we obtain

∆`(∆xk) = `(x̂k+1)− `(x̂k) ≈ −αk (∇x`(x̂k))T Q(x̂k)∇x`(x̂k) = −αk‖∇x`(x̂k)‖2
Q(x̂k) < 0 ,

whenever ∇x`(x̂k) 6= 0,20, so that we expect that the algorithm (36) will result in a strictly
decreasing loss function,

`(x̂k+1) < `(x̂k) .

This will not be the case if the step–size αk is chosen too large so that the key approximation
(34) is invalid. Thus we see that a proper choice of step–size is key to ensuring good
performance and, indeed, the step–size issue is usually discussed at great length in course
on mathematical optimization.

Constrained Optimization: The Method of Lagrange Multipliers. Assume, for
simplicity, that only the standard inner product holds on all spaces of interest. If there are
p independent equality constraint conditions,21 they can be represented as

g(x) ≡ 0 , (42)

where g(·) : Rn → Rp. The constraint condition (42) defines a locally p–dimensional smooth
surface in X = Rn which we call the constraint manifold. Because the constraint condition
(42) holds identically, it must be the case that admissible differential variations satisfy the
condition

∂g(x)

∂x
dx = 0 .

Thus, admissible variations dx must be in the nullspace of ∂g(x)
∂x

, dx ∈ N
(

∂g(x)
∂x

)
.

20If ∇x`(x̂k) = 0 then x̂k satisfies the necessary condition for a local optimum and the algorithm has
converge to a solution.

21The p constraints g(x) = 0 are linearly independent at the point x if and only if the Jacobian matrix of
g(x), ∂g(x)

∂x , has full row–rank at the point x.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.011

Let `(x) be a general loss function.22 As discussed in class, a necessary condition to
have minimized the loss function `(x) on the constraint manifold is that the projection of its

gradient ∇x`(x) into the nullspace of ∂g(x)
∂x

is zero. Equivalently, when ∇x`(x) ⊥ N (∂g(x)
∂x

).
Thus

∇x`(x) ∈ N
(
∂g(x)

∂x

)⊥
= R

(
∂g(x)

∂x

T
)
,

and therefore (
∂

∂x
`(x)

)T

= ∇x`(x) = −∂g(x)

∂x

T

λ (43)

for some vector λ ∈ Rp.23 Equation (43) is a necessary condition for the point x to minimize
`(x) on the constraint manifold.

The necessary optimality condition (43) can be rewritten as the equivalent necessary
condition,

0 =
∂

∂x

(
`(x) + λTg(x)

)
=

∂

∂x
L(x;λ) , (44)

where
L(x;λ) = `(x) + λTg(x) (45)

is the lagrangian function. Notice that the stationarity condition

∂

∂λ
L(x;λ) = 0

retrieves the equality constraint condition (42), while the stationarity condition

∂

∂x
L(x;λ) = 0

retrieves the necessary condition (43).

The two necessary conditions (42) and (43) are together to be solved for the optimal
point x. Thus, the lagrangian (45) provides a complete encoding of the information needed
to solve for a solution to the necessary conditions (42) and (43).

As an example, consider the constrained quadratic optimization problem

min
x

1

2
‖x‖2

Ω subject to Ax = y

where the m× n matrix A is onto. The constraint condition can be written as

g(x) = y − Ax = 0 ,

22Not limited only to the least squares loss function described above.
23The elements of the vector λ are called lagrange multipliers.



K. Kreutz-Delgado — Copyright c© 2003-2009, All Rights Reserved – Version ECE174NLS-S2009v1.012

and the lagrangian as

L =
1

2
‖x‖2

Ω + λT (y − Ax) .

We have that

0 =
∂

∂x
L = xT Ω− λTA ,

which can be solved to yield the condition24

x̂ = Ω−1ATλ .

Applying the condition Ax = y to this equation allows us to solve for the lagrange multipliers
as

λ =
(
AΩ−1AT

)−1
y

so that finally

x̂ = Ω−1AT
(
AΩ−1AT

)−1
y = A+y ,

which is equivalent to the solution we found earlier using geometric methods.

24Note that this condition is equivalent to the geometric condition that x̂ = A∗λ, i.e. the condition that
x̂ ∈ R(A∗). This justifies the claim made in lecture earlier in the quarter that the vector λ can be interpreted
as a vector of lagrange multipliers.


